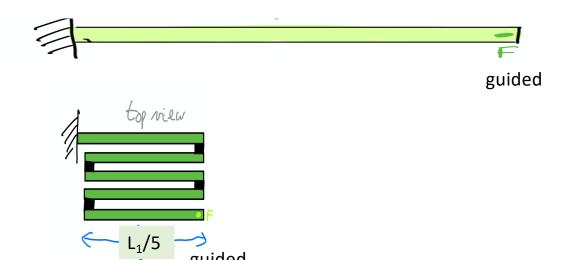


Problem 1. Spring design, one end fixed, one end guided

- We wish to replace a single cantilever of length L₁ with folded (serpentine) spring of segment length L₂ = L₁ /5. We want the same total bending stiffness for out of plane motion (force in z direction)
- 1. write k₁ and k₂ as a function of L₁, w, t and N, where N is the number of serpentine segments
- 2. Write an expression linking w and t and N (for L₂ = L₁ /5)
- 3. Make 3 reasonable spring designs to get k=1
 N/m for L₂=100 μm. The material is Silicon (you look up the required material paratmers)

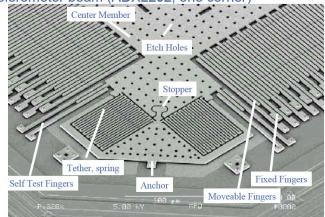


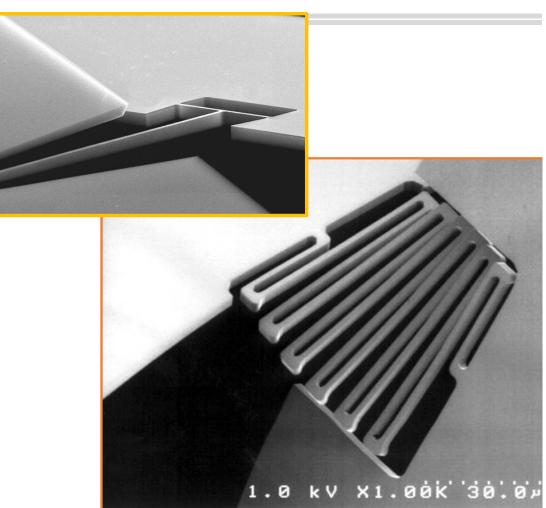
Some background on folded (serpentine) springs

Serpentine springs

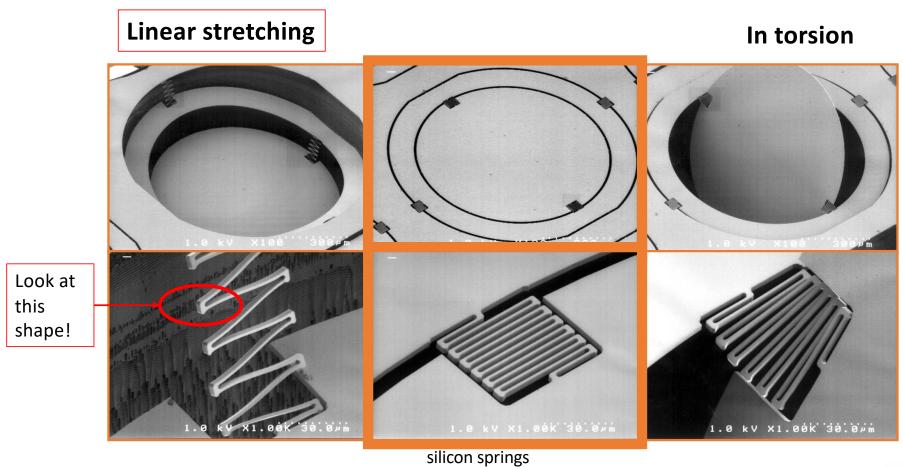
- take less area, and
- allow for more design freedom for different modes (but adds more challenges)
- Typically used either in overall bending or in torsion
- Need to consider bending stiffness on all axes for a proper complet design

Accelerometer beam (ADXL202, one corner)





Lucent technologies



Lucent Technologies
Bell Labs Innovations

Single crystal silicon, 5 μm thick. Segments are approximately 2 μm wide

(for background: these mirrors are for optical cross-connects). Springs were designed primarily for torsional stiffness.

Boundary conditions matter for spring constants...

reference no.	Boundary values	Selected maximum values of moments and deformations
1a. Left end free, right end fixed (cantilever)	$R_A = 0 \qquad M_A = 0 \qquad \theta_A = \frac{W(l-a)^2}{2EI}$	Max $M = M_B$; max possible value $= -Wl$ when $a = 0$
$\leftarrow a \rightarrow \bigvee_{}^{W}$	$y_A = \frac{-W}{6EI}(2l^3 - 3l^2a + a^3)$	Max $\theta = \theta_A$; max possible value $= \frac{Wl^2}{2EI}$ when $a = 0$
	$R_B = W \qquad M_B = -W(l-a)$	Max $y = y_A$; max possible value $= \frac{-W/3}{3EI}$ when $a = 0$
V,	$\theta_B = 0 \qquad y_B = 0$	X.

b. Left end guided, right
$$R_A=0$$
 $M_A=\frac{W(l-a)^2}{2l}$ $\theta_A=0$

$$y_A = \frac{-W}{12EI}(l-a)^2(l+2a)$$

$$y_A = \frac{-W}{12EI}(l-a)^2(l+2a)$$
 $R_B = W \qquad M_B = \frac{-W(l^2-a^2)}{2l}$

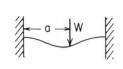
$$\theta_B = 0$$
 $y_B = 0$

$$\text{Max} + M = M_A$$
; max possible value = $\frac{W!}{2}$ when $a = 0$

$$\text{Max} - M = M_B$$
; max possible value $= \frac{-Wl}{2}$ when $a = 0$

Max
$$y = y_A$$
; max possible value $= \frac{-Wl^3}{12EI}$ when $a = 0$

4 x stiffer!



1d. Left end fixed, right end
$$R_A = \frac{W}{l^3}(l-a)^2(l+2a)$$

$$M_A = \frac{-Wa}{l^2}(l-a)^2$$

$$\theta_A = 0 \qquad y_A = 0$$

$$R_B = \frac{Wa^2}{l^3}(3l-2a)$$

$$\theta_A = 0 \qquad y_A = 0$$

$$R_B = \frac{Wa^2}{l^3} (3l - 2a)$$

$$M_B = \frac{-Wa^2}{l^2}(l-a)$$

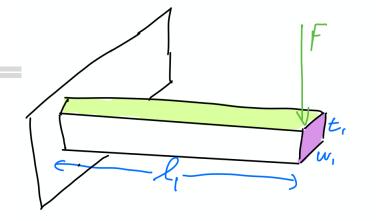
$$\theta_B = 0 \qquad y_B = 0$$

Max +
$$M = \frac{2Wa^2}{l^3}(l-a)^2$$
 at $x = a$; max possible value = $\frac{Wl}{8}$ when $a = \frac{l}{2}$

$$\operatorname{Max} - M = M_A$$
 if $a < \frac{l}{2}$; max possible value $= -0.1481 Wl$ when $a = \frac{l}{3}$

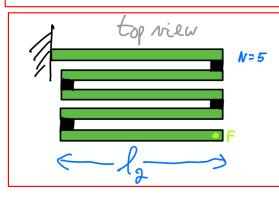
Double clamped Max
$$y = \frac{-2W(l-a)^2a^3}{3EI(l+2a)^2}$$
 at $x = \frac{2al}{l+2a}$ if $a > \frac{l}{2}$; max possible value $= \frac{-Wl^3}{192EI}$ when $x = a = \frac{l}{2}$ 64 x stiffer!

$$x = a = \frac{\epsilon}{2}$$
64 x stiffer!



Since the mirror is attached, we will use the <u>guided –fixed formula</u> for a single beam

Single beam

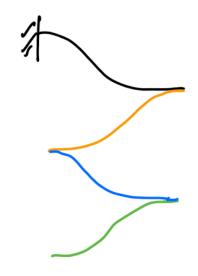


Serpentine beam, in bending

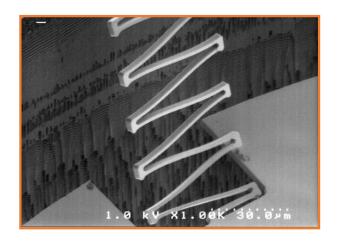
Springs in series? In parallel?

How does each spring deform? See SEM image on slide 3

Serpentine beam. What assumptions to make about bending shape?



angle 0 at each end of the folded beams



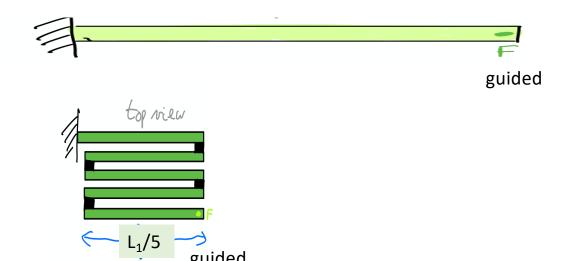
For each segment, we also have the guided – fixed case

But now we have N beam in series, so

$$k_{serpentine} = \frac{k_{segment}}{N}$$

Problem 1. Spring design, one end fixed, one end guided

- We wish to replace a single cantilever of length L₁ with folded (serpentine) spring of segment length L₂ = L₁ /5. We want the same total bending stiffness for out of plane motion (force in z direction)
- 1. write k₁ and k₂ as a function of L₁, w, t and N, where N is the number of serpentine segments
- 2. Write an expression linking w and t and N (for L₂ = L₁ /5)
- 3. Make 3 reasonable spring designs to get k=1
 N/m for L₂=100 μm. The material is Silicon (you look up the required material paratmers)



EPFL

- 4. Express the side bending stiffness for force in y direction vs. geometry
- 5. For the 3 reasonable spring designs that gave 1N/m in z direction, what stiffness do you get in the y direction?



